EconPapers    
Economics at your fingertips  
 

A general procedure to combine estimators

F. Lavancier and P. Rochet

Computational Statistics & Data Analysis, 2016, vol. 94, issue C, 175-192

Abstract: A general method to combine several estimators of the same quantity is investigated. In the spirit of model and forecast averaging, the final estimator is computed as a weighted average of the initial ones, where the weights are constrained to sum to one. In this framework, the optimal weights, minimizing the quadratic loss, are entirely determined by the mean squared error matrix of the vector of initial estimators. The averaging estimator is built using an estimation of this matrix, which can be computed from the same dataset. A non-asymptotic error bound on the averaging estimator is derived, leading to asymptotic optimality under mild conditions on the estimated mean squared error matrix. This method is illustrated on standard statistical problems in parametric and semi-parametric models where the averaging estimator outperforms the initial estimators in most cases.

Keywords: Averaging; Parametric estimation; Weibull model; Boolean model (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315001735
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:94:y:2016:i:c:p:175-192

DOI: 10.1016/j.csda.2015.08.001

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:175-192