EconPapers    
Economics at your fingertips  
 

On stepwise pattern recovery of the fused Lasso

Junyang Qian and Jinzhu Jia

Computational Statistics & Data Analysis, 2016, vol. 94, issue C, 221-237

Abstract: We study the property of the Fused Lasso Signal Approximator (FLSA) for estimating a blocky signal sequence with additive noise. We transform the FLSA to an ordinary Lasso problem, and find that in general the resulting design matrix does not satisfy the irrepresentable condition that is known as an almost necessary and sufficient condition for exact pattern recovery. We give necessary and sufficient conditions on the expected signal pattern such that the irrepresentable condition holds in the transformed Lasso problem. However, these conditions turn out to be very restrictive. We apply the newly developed preconditioning method — Puffer Transformation (Jia and Rohe, 2015) to the transformed Lasso and call the new procedure the preconditioned fused Lasso. We give non-asymptotic results for this method, showing that as long as the signal-to-noise ratio is not too small, our preconditioned fused Lasso estimator always recovers the correct pattern with high probability. Theoretical results give insight into what controls the ability of recovering the pattern — it is the noise level instead of the length of the signal sequence. Simulations further confirm our theorems and visualize the significant improvement of the preconditioned fused Lasso estimator over the vanilla FLSA in exact pattern recovery.

Keywords: Fused Lasso; Non-asymptotic; Pattern recovery; Preconditioning (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315002017
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:94:y:2016:i:c:p:221-237

DOI: 10.1016/j.csda.2015.08.013

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:221-237