A sequential logistic regression classifier based on mixed effects with applications to longitudinal data
Xin Zhang,
Daniel R. Jeske,
Jun Li and
Vance Wong
Computational Statistics & Data Analysis, 2016, vol. 94, issue C, 238-249
Abstract:
Making an early classification in longitudinal data is highly desirable. For this purpose, a sequential classifier that incorporates a neutral zone framework is proposed. The classification procedure evaluates each subject sequentially at each longitudinal time point. If there is not adequate confidence in making a classification at a given time point, the decision will wait until the next time point where another measurement is collected. This process continues until there is enough confidence of making a classification or until the last time point where data can be collected is reached. It is demonstrated that the proposed sequential classifier maintains competitive error rates while reducing the overall cost when the cost of time is taken into account. The classifier is applied to a real example of identifying patients that are vulnerable to kidney dysfunction on the basis of up to 7 blood draws sequentially taken from each patient.
Keywords: Classification; Mixed effects models; Longitudinal data (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315001978
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:94:y:2016:i:c:p:238-249
DOI: 10.1016/j.csda.2015.08.009
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().