A modified local quadratic approximation algorithm for penalized optimization problems
Sangin Lee,
Sunghoon Kwon and
Yongdai Kim
Computational Statistics & Data Analysis, 2016, vol. 94, issue C, 275-286
Abstract:
In this paper, we propose an optimization algorithm called the modified local quadratic approximation algorithm for minimizing various ℓ1-penalized convex loss functions. The proposed algorithm iteratively solves ℓ1-penalized local quadratic approximations of the loss function, and then modifies the solution whenever it fails to decrease the original ℓ1-penalized loss function. As an extension, we construct an algorithm for minimizing various nonconvex penalized convex loss functions by combining the proposed algorithm and convex concave procedure, which can be applied to most nonconvex penalty functions such as the smoothly clipped absolute deviation and minimax concave penalty functions. Numerical studies show that the algorithm is stable and fast for solving high dimensional penalized optimization problems.
Keywords: Local quadratic approximation; ℓ1-penalization; Nonconvex penalization; LASSO; SCAD; MCP (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315002078
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:94:y:2016:i:c:p:275-286
DOI: 10.1016/j.csda.2015.08.019
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().