Adaptive conditional feature screening
Lu Lin and
Jing Sun
Computational Statistics & Data Analysis, 2016, vol. 94, issue C, 287-301
Abstract:
When the correlation among the predictors is relatively strong and/or the model structures cannot be specified, the construction of adaptive feature screening remains a challenging issue. A general technique of conditional feature screening is proposed via combining a model-free feature screening with a predetermined set of predictors. The proposed centralization technique can remove the irrelevant part from the criterion of the model-free feature screening. Consequently, the new criterion can measure the marginal utilities of predictors conditional on the predetermined set of predictors. The conditional information about these predetermined predictors helps reducing the correlation among covariates and as a result the resulting method can reduce the false positive and the false negative rates in the variable selection procedure. Thus, our method is adaptive to both the correlation among the covariates and the model misspecification. The new procedures are computationally efficient and simple, and can be extended to other relevant methods.
Keywords: High-dimensional data; Model free; Conditional feature screening; Adaptability; Marginal utility (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315002108
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:94:y:2016:i:c:p:287-301
DOI: 10.1016/j.csda.2015.09.002
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().