A likelihood-free filtering method via approximate Bayesian computation in evaluating biological simulation models
Takanori Hasegawa,
Atsushi Niida,
Tomoya Mori,
Teppei Shimamura,
Rui Yamaguchi,
Satoru Miyano,
Tatsuya Akutsu and
Seiya Imoto
Computational Statistics & Data Analysis, 2016, vol. 94, issue C, 63-74
Abstract:
For the evaluation of the dynamic behavior of biological processes, e.g., gene regulatory sequences, we typically utilize nonlinear differential equations within a state space model in the context of genomic data assimilation. For the estimation of the parameter values for such systems, the particle filter can be a strong approach in terms of obtaining their theoretically exact posterior distributions of the parameter values. However, it has some drawbacks for dealing with biological processes in practice: (i) the number of unique particles decreases rapidly since the dimension of the parameter vector and the number of observed time points are higher than its capability, (ii) it cannot be applied when the likelihood function is analytically intractable, and (iii) the prior distributions of the parameter values are often arbitrary determined. To address these problems, we propose a novel method that utilizes the approximate Bayesian computation in filtering the data and self-organizing ensemble Kalman filter in constructing the prior distributions of the parameter values. Simulation studies show that the proposed method can overcome these problems; thus, it can estimate the posterior distributions of the parameter values with automatically setting prior distributions even for the cases that the particle filter cannot perform good results. Finally, we apply the method to real observation data in rat circadian oscillation and demonstrate the usefulness in practical situations.
Keywords: Approximate Bayesian computation; Nonlinear state space model; Biological simulation; Gene expression (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315001760
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:94:y:2016:i:c:p:63-74
DOI: 10.1016/j.csda.2015.08.003
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().