EconPapers    
Economics at your fingertips  
 

Hierarchical independent component analysis: A multi-resolution non-orthogonal data-driven basis

Piercesare Secchi, Simone Vantini and Paolo Zanini

Computational Statistics & Data Analysis, 2016, vol. 95, issue C, 133-149

Abstract: A new method named Hierarchical Independent Component Analysis is presented, particularly suited for dealing with two problems regarding the analysis of high-dimensional and complex data: dimensional reduction and multi-resolution analysis. It takes into account the Blind Source Separation framework, where the purpose is the research of a basis for a dimensional reduced space to represent data, whose basis elements represent physical features of the phenomenon under study. In this case orthogonal basis could be not suitable, since the orthogonality introduces an artificial constraint not related to the phenomenological properties of the analyzed problem. For this reason this new approach is introduced. It is obtained through the integration between Treelets and Independent Component Analysis, and it is able to provide a multi-scale non-orthogonal data-driven basis. Furthermore a strategy to perform dimensional reduction with a non orthogonal basis is presented and the theoretical properties of Hierarchical Independent Component Analysis are analyzed. Finally HICA algorithm is tested both on synthetic data and on a real dataset regarding electroencephalographic traces.

Keywords: Blind source separation; Dimensional reduction; Electroencephalography; Independent component analysis; Multi-resolution analysis; Treelets (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315002418
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:95:y:2016:i:c:p:133-149

DOI: 10.1016/j.csda.2015.09.014

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:95:y:2016:i:c:p:133-149