Regularized quantile regression under heterogeneous sparsity with application to quantitative genetic traits
Qianchuan He,
Linglong Kong,
Yanhua Wang,
Sijian Wang,
Timothy A. Chan and
Eric Holland
Computational Statistics & Data Analysis, 2016, vol. 95, issue C, 222-239
Abstract:
Genetic studies often involve quantitative traits. Identifying genetic features that influence quantitative traits can help to uncover the etiology of diseases. Quantile regression method considers the conditional quantiles of the response variable, and is able to characterize the underlying regression structure in a more comprehensive manner. On the other hand, genetic studies often involve high-dimensional genomic features, and the underlying regression structure may be heterogeneous in terms of both effect sizes and sparsity. To account for the potential genetic heterogeneity, including the heterogeneous sparsity, a regularized quantile regression method is introduced. The theoretical property of the proposed method is investigated, and its performance is examined through a series of simulation studies. A real dataset is analyzed to demonstrate the application of the proposed method.
Keywords: Heterogeneous sparsity; Quantitative traits; Variable selection; Quantile regression; Genomic features (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315002625
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:95:y:2016:i:c:p:222-239
DOI: 10.1016/j.csda.2015.10.007
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().