Fast computation of large scale marginal extremes with multi-dimensional covariates
Laks Raghupathi,
David Randell,
Kevin Ewans and
Philip Jonathan
Computational Statistics & Data Analysis, 2016, vol. 95, issue C, 243-258
Abstract:
Safe and reliable design and operation of fixed and floating marine structures often located in remote and hostile environments is challenging. Rigorous extreme value analysis of meteorological and oceanographic data can greatly aid the design of such structures. Extreme value analysis is typically undertaken for single spatial locations or for small neighbourhoods; moreover, non-stationary effects of covariates on extreme values are typically accommodated in an ad-hoc manner. The objective of the work summarised here is to improve design practice by estimating environmental design conditions (such as return values for extreme waves, winds and currents) for a whole ocean basin, including additional covariate effects (such as storm direction) as necessary, in a consistent manner. Whole-basin non-stationary extreme value modelling is computationally complex, requiring inter-alia the estimation of tail functions, the parameters of which vary with respect to multi-dimensional covariates characterised by us using tensor products of penalised B-splines. We outline two technical contributions which make whole-basin non-stationary analysis feasible. Firstly, we adopt generalised linear array methods to reduce the computational burden of matrix manipulations. Secondly, using high-performance computing, we develop a parallel implementation of maximum likelihood estimation for the generalised Pareto distribution. Together, these innovations allow estimation of rigorous whole-basin extreme value models in reasonable time. We evaluate the new approach in application to marginal extreme value modelling of storm peak significant wave heights in two ocean basins, accommodating spatial and directional covariate effects.
Keywords: Extremes; Splines; Non-stationary effects; Fast-computation; High-performance computation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315002315
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:95:y:2016:i:c:p:243-258
DOI: 10.1016/j.csda.2015.09.006
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().