Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions
Yuki Ikeda,
Tatsuya Kubokawa and
Muni S. Srivastava
Computational Statistics & Data Analysis, 2016, vol. 95, issue C, 95-108
Abstract:
The problem of estimating the large covariance matrix of both normal and non-normal distributions is addressed. In convex combinations of the sample covariance matrix and a positive definite target matrix, the optimal weight is estimated by exact or approximate unbiased estimators of the numerator and denominator of the optimal weight in normal or non-normal cases. A spherical and a diagonal matrices are two typical examples of target matrices, and the corresponding single shrinkage estimators are provided. A double shrinkage estimator which shrinks the sample covariance matrix toward the two target matrices is also suggested. The performances of single and double shrinkage estimators are numerically investigated through simulation and empirical studies.
Keywords: Covariance matrix; Double shrinkage; High dimension; Large sample; Non-normal distribution; Normal distribution; Linear shrinkage estimator; Risk function; Shrinkage (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315002388
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:95:y:2016:i:c:p:95-108
DOI: 10.1016/j.csda.2015.09.011
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().