EconPapers    
Economics at your fingertips  
 

Estimation of survival and capture probabilities in open population capture–recapture models when covariates are subject to measurement error

Jakub Stoklosa, Peter Dann, Richard M. Huggins and Wen-Han Hwang

Computational Statistics & Data Analysis, 2016, vol. 96, issue C, 74-86

Abstract: Predictor variables (or covariates) are frequently used in a capture–recapture analysis when estimating demographic quantities such as population size or survival probabilities. If these predictor variables are measured with error and subsequently used in the analysis, then estimates of the model parameters may be biased. Several approaches have been proposed to account for error-in-variables in capture–recapture models, however these methods generally assume the population is closed; hence quantities of interest for open populations such as the survival probabilities do not appear in the likelihood. To account for measurement error in environmental time-varying covariates for open population capture–recapture data, the well-known Cormack–Jolly–Seber model and two statistical methods are considered: (1) simulation–extrapolation; and (2) regression calibration, as well as a new method which accounts for correlation (arising from measurement error) between the survival and capture probabilities. Several simulation studies are conducted to examine the method performances, and a case study is presented which uses capture–recapture data on the Little Penguin Eudyptula minor and sea-surface temperature data as an environmental covariate to model their survival and capture probabilities.

Keywords: Cormack–Jolly–Seber model; Error-in-variables; Little Penguins; Mark–capture–recapture; Regression calibration; SIMEX (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315002650
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:96:y:2016:i:c:p:74-86

DOI: 10.1016/j.csda.2015.10.010

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:96:y:2016:i:c:p:74-86