EconPapers    
Economics at your fingertips  
 

Estimating extreme tail risk measures with generalized Pareto distribution

Myung Hyun Park and Joseph H.T. Kim

Computational Statistics & Data Analysis, 2016, vol. 98, issue C, 91-104

Abstract: The generalized Pareto distribution (GPD) has been widely used in modelling heavy tail phenomena in many applications. The standard practice is to fit the tail region of the dataset to the GPD separately, a framework known as the peaks-over-threshold (POT) in the extreme value literature. In this paper we propose a new GPD parameter estimator, under the POT framework, to estimate common tail risk measures, the Value-at-Risk (VaR) and Conditional Tail Expectation (also known as Tail-VaR) for heavy-tailed losses. The proposed estimator is based on a nonlinear weighted least squares method that minimizes the sum of squared deviations between the empirical distribution function and the theoretical GPD for the data exceeding the tail threshold. The proposed method properly addresses a caveat of a similar estimator previously advocated, and further improves the performance by introducing appropriate weights in the optimization procedure. Using various simulation studies and a realistic heavy-tailed model, we compare alternative estimators and show that the new estimator is highly competitive, especially when the tail risk measures are concerned with extreme confidence levels.

Keywords: Generalized Pareto distribution; Value-at-Risk (VaR); Conditional Tail Expectation (CTE); Tail VaR; Peaks over threshold (POT); Weighted nonlinear least squares (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315003163
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:98:y:2016:i:c:p:91-104

DOI: 10.1016/j.csda.2015.12.008

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:98:y:2016:i:c:p:91-104