EconPapers    
Economics at your fingertips  
 

Robust regression estimation and inference in the presence of cellwise and casewise contamination

Andy Leung, Hongyang Zhang and Ruben Zamar

Computational Statistics & Data Analysis, 2016, vol. 99, issue C, 1-11

Abstract: Cellwise outliers are likely to occur together with casewise outliers in modern datasets of relatively large dimension. Recent work has shown that traditional robust regression methods may fail when applied to such datasets. We propose a new robust regression procedure to deal with casewise and cellwise outliers. The proposed method, called three-step regression, proceeds as follows: first, it uses a consistent univariate filter, that is, a procedure that flags and eliminates extreme cellwise outliers; second, it applies a robust estimator of multivariate location and scatter to the filtered data to down-weight casewise outliers; third, it computes robust regression coefficients from the estimates obtained in the second step. The three-step estimator is consistent and asymptotically normal at the central model under some assumptions on the tails of the distributions of the continuous covariates. The estimator is extended to handle both continuous and dummy covariates using an iterative algorithm. Extensive simulation results show that the three-step estimator is resilient to cellwise outliers. It also performs well under casewise contamination when compared to traditional high breakdown point estimators.

Keywords: Cellwise outliers; Componentwise contamination; Regression S-estimation; Robust estimation; Filtering (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731600013X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:99:y:2016:i:c:p:1-11

DOI: 10.1016/j.csda.2016.01.004

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:99:y:2016:i:c:p:1-11