EconPapers    
Economics at your fingertips  
 

Classification methods for Hilbert data based on surrogate density

Enea G. Bongiorno and Aldo Goia

Computational Statistics & Data Analysis, 2016, vol. 99, issue C, 204-222

Abstract: An unsupervised and a supervised classification approach for Hilbert random curves are studied. Both rest on the use of a surrogate of the probability density which is defined, in a distribution-free mixture context, from an asymptotic factorization of the small-ball probability. That surrogate density is estimated by a kernel approach from the principal components of the data. The focus is on the illustration of the classification algorithms and the computational implications, with particular attention to the tuning of the parameters involved. Some asymptotic results are sketched. Applications on simulated and real datasets show how the proposed methods work.

Keywords: Density based clustering; Discriminant Bayes rule; Hilbert data; Small-ball probability mixture; Functional principal component; Kernel density estimate (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316300056
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:99:y:2016:i:c:p:204-222

DOI: 10.1016/j.csda.2016.01.019

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:99:y:2016:i:c:p:204-222