Identification of important features in overweight and obesity among Korean adolescents using machine learning
Serim Lee and
JongSerl Chun
Children and Youth Services Review, 2024, vol. 161, issue C
Abstract:
Overweight and obesity in adolescents have been reported as one of the most serious threats worldwide including South Korea. This study aims to investigate the complex factors contributing to overweight and obesity in Korean adolescents using various machine learning methods. The research includes a dataset of 43,268 records from the 16th Korean Youth Risk Behavior Web-based Survey and explores 71 different factors, such as sociodemographic characteristics, dietary habits, health, behavior problems, family, and peer and school-related factors. Our analysis encompassed an array of algorithms, including Logistic Regression, Ridge, LASSO, Elasticnet, Decision tree, Bagging, Random forest, AdaBoost, and XGBoost. A total of nine machine learning models exhibited accuracy levels within the range of 0.7662 to 0.8403. Based on the domains and sub-domains of factors, it was determined that domains including sociodemographic characteristics, dietary habits, physical health, psychological health, behavioral problems, family factor, and peer and school factors were deemed important. Additionally, it is suggested that attention be given to newly-emerged features indicated by machine learning techniques, including oral health, smartphone addiction, smoking, sexual behavior, school violence, and nationality of parents. The current study's findings emphasize the critical need for collective and customized prevention programs considering multi-facet features to prevent overweight and obesity among Korean adolescents.
Keywords: Machine learning; Feature importance; Overweight; Obesity; Korean adolescents (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0190740924002160
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:cysrev:v:161:y:2024:i:c:s0190740924002160
DOI: 10.1016/j.childyouth.2024.107644
Access Statistics for this article
Children and Youth Services Review is currently edited by Duncan Lindsey
More articles in Children and Youth Services Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().