EconPapers    
Economics at your fingertips  
 

Benchmarking machine-learning software and hardware for quantitative economics

Victor Duarte, Diogo Duarte, Julia Fonseca and Alexis Montecinos

Journal of Economic Dynamics and Control, 2020, vol. 111, issue C

Abstract: We investigate the performance of machine-learning software and hardware for quantitative economics. We show that the use of machine-learning software and hardware can significantly reduce computational time in compute-intensive tasks. Using a sovereign default model and the Least Squares Monte Carlo option pricing algorithm as benchmarks, we show that specialized hardware and software speed up calculations by up to four orders of magnitude when compared to programs written in popular high-level programming languages, such as MATLAB, Julia, Python/Numpy, and R, and high-performing low-level languages such as C++.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165188919301939
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:dyncon:v:111:y:2020:i:c:s0165188919301939

DOI: 10.1016/j.jedc.2019.103796

Access Statistics for this article

Journal of Economic Dynamics and Control is currently edited by J. Bullard, C. Chiarella, H. Dawid, C. H. Hommes, P. Klein and C. Otrok

More articles in Journal of Economic Dynamics and Control from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:dyncon:v:111:y:2020:i:c:s0165188919301939