High-frequency volatility modeling: A Markov-Switching Autoregressive Conditional Intensity model
Yifan Li,
Ingmar Nolte and
Sandra Nolte (Lechner)
Journal of Economic Dynamics and Control, 2021, vol. 124, issue C
Abstract:
We develop a Markov-Switching Autoregressive Conditional Intensity (MS-ACI) model with time-varying transitional probability, and show that it can be reliably estimated via the Stochastic Approximation Expectation–Maximization algorithm. Applying our model to high-frequency transaction data, we detect two distinct regimes in the intraday volatility process: a dominant volatility regime that is observable throughout the trading day representing the risk-transferring trading activity of investors, and a minor volatility regime that concentrates around market liquidity shocks which mainly capture impacts of firm-specific news arrivals. We propose a novel daily volatility decomposition based on the two detected volatility regimes.
Keywords: Regime switch; Intensity modeling; Invariance; Stock return volatility (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165188921000129
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:dyncon:v:124:y:2021:i:c:s0165188921000129
DOI: 10.1016/j.jedc.2021.104077
Access Statistics for this article
Journal of Economic Dynamics and Control is currently edited by J. Bullard, C. Chiarella, H. Dawid, C. H. Hommes, P. Klein and C. Otrok
More articles in Journal of Economic Dynamics and Control from Elsevier
Bibliographic data for series maintained by Catherine Liu ().