Estimation of agent-based models using Bayesian deep learning approach of BayesFlow
Takashi Shiono
Journal of Economic Dynamics and Control, 2021, vol. 125, issue C
Abstract:
This study examines the possibility of applying the novel likelihood-free Bayesian inference called BayesFlow proposed by Radev et al. (2020) for the estimation of agent-based models (ABMs). BayesFlow is a fully likelihood-free approach, which directly approximates a posterior rather than a likelihood function by learning an invertible probabilistic mapping between parameters and standard Gaussian variables, conditional on simulation data from the ABM to be estimated. BayesFlow certainly achieved superior accuracy to the benchmark method of Kernel Density Estimation-MCMC of Grazzini et al. (2017) and the more sophisticated method of Mixture Density Network-MCMC of Platt (2019), in the validation tests of recovering the ground-truth values of parameters from the simulated datasets of a standard New Keynesian ABM (NK-ABM). Furthermore, the truly empirical estimation of NK-ABM with the real data of the US economy successfully showed the desirable pattern of posterior contraction along with the increase in observation periods. This deep neural network-based method holds general applicability without any critical dependence on pre-selected design and high computational efficiency. These features are desirable when scaling the method to practical-sized ABMs, which typically have high-dimensional parameters and observation variables.
Keywords: Agent-based model; Bayesian inference; Deep learning; Parameter estimation; Neural network (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165188921000178
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:dyncon:v:125:y:2021:i:c:s0165188921000178
DOI: 10.1016/j.jedc.2021.104082
Access Statistics for this article
Journal of Economic Dynamics and Control is currently edited by J. Bullard, C. Chiarella, H. Dawid, C. H. Hommes, P. Klein and C. Otrok
More articles in Journal of Economic Dynamics and Control from Elsevier
Bibliographic data for series maintained by Catherine Liu ().