Non-linear dimension reduction in factor-augmented vector autoregressions
Karin Klieber
Journal of Economic Dynamics and Control, 2024, vol. 159, issue C
Abstract:
This paper introduces non-linear dimension reduction in factor-augmented vector autoregressions to analyze the effects of different economic shocks. I argue that controlling for non-linearities between a large-dimensional dataset and the latent factors is particularly useful during turbulent times of the business cycle. In simulations, I show that non-linear dimension reduction techniques yield good forecasting performance, especially when data is highly volatile. In an empirical application, I identify a monetary policy as well as an uncertainty shock excluding and including observations of the COVID-19 pandemic. Those two applications suggest that the non-linear FAVAR approaches are capable of dealing with the large outliers caused by the COVID-19 pandemic and yield reliable results in both scenarios.
Keywords: Dimension reduction; Machine learning; Non-linear factor-augmented vector autoregression; Monetary policy shock; Uncertainty shock; Impulse response analysis; COVID-19 (search for similar items in EconPapers)
JEL-codes: C11 C32 C40 C55 E37 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165188923002063
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:dyncon:v:159:y:2024:i:c:s0165188923002063
DOI: 10.1016/j.jedc.2023.104800
Access Statistics for this article
Journal of Economic Dynamics and Control is currently edited by J. Bullard, C. Chiarella, H. Dawid, C. H. Hommes, P. Klein and C. Otrok
More articles in Journal of Economic Dynamics and Control from Elsevier
Bibliographic data for series maintained by Catherine Liu ().