Cross-cryptocurrency return predictability
Li Guo,
Bo Sang,
Jun Tu and
Yu Wang
Journal of Economic Dynamics and Control, 2024, vol. 163, issue C
Abstract:
Using data from Binance, we find strong evidence of cross-cryptocurrency return predictability. The lagged returns of other cryptocurrencies serve as significant predictors of focal cryptocurrencies. The results are robust across various methods, including the adaptive LASSO and principal component analysis. Furthermore, a long-short portfolio formed on the past returns of cryptocurrencies can generate a sizable return out-of-sample after accounting for transaction costs. Overall, our findings corroborate cross-cryptocurrency return predictability and are consistent with the spillover effect mechanism, where common shocks among cryptocurrencies coupled with the limited attention of investors lead to slow information diffusion across coins.
Keywords: Cryptocurrency; Return predictability; Information spillover; Adaptive LASSO (search for similar items in EconPapers)
JEL-codes: G10 G11 G14 G40 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165188924000551
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:dyncon:v:163:y:2024:i:c:s0165188924000551
DOI: 10.1016/j.jedc.2024.104863
Access Statistics for this article
Journal of Economic Dynamics and Control is currently edited by J. Bullard, C. Chiarella, H. Dawid, C. H. Hommes, P. Klein and C. Otrok
More articles in Journal of Economic Dynamics and Control from Elsevier
Bibliographic data for series maintained by Catherine Liu ().