Decentralised finance and automated market making: Execution and speculation
Álvaro Cartea,
Fayçal Drissi and
Marcello Monga
Journal of Economic Dynamics and Control, 2025, vol. 177, issue C
Abstract:
Automated market makers (AMMs) are a new prototype of decentralised exchanges which are revolutionising market interactions. The majority of AMMs are constant product markets (CPMs) where exchange rates are set by a trading function. This work studies optimal trading and statistical arbitrage in CPMs where balancing exchange rate risk and execution costs is key. Empirical evidence shows that execution costs are accurately estimated by the convexity of the trading function. These convexity costs are linear in the trade size and are nonlinear in the depth of liquidity and in the exchange rate. We develop models for when exchange rates form in a competing centralised exchange, in a CPM, or in both venues. Finally, we derive computationally efficient strategies that account for stochastic convexity costs and we showcase their out-of-sample performance.
Keywords: Decentralised finance; Blockchains; Automated market making; Smart contracts; Algorithmic trading; Statistical arbitrage; Predictive signals (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165188925001009
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:dyncon:v:177:y:2025:i:c:s0165188925001009
DOI: 10.1016/j.jedc.2025.105134
Access Statistics for this article
Journal of Economic Dynamics and Control is currently edited by J. Bullard, C. Chiarella, H. Dawid, C. H. Hommes, P. Klein and C. Otrok
More articles in Journal of Economic Dynamics and Control from Elsevier
Bibliographic data for series maintained by Catherine Liu ().