Estimated U.S. manufacturing production capital and technology based on an estimated dynamic structural economic model
Baoline Chen and
Peter Zadrozny
Journal of Economic Dynamics and Control, 2009, vol. 33, issue 7, 1398-1418
Abstract:
Production capital and total factor productivity or technology are fundamental to understanding output and productivity growth, but are unobserved except at disaggregated levels and must be estimated before being used in empirical analysis. In this paper, we develop estimates of production capital and technology for U.S. total manufacturing based on an estimated dynamic structural economic model. First, using annual U.S. total manufacturing data for 1947-1997, we estimate by maximum likelihood a dynamic structural economic model of a representative production firm. In the estimation, capital and technology are completely unobserved or latent variables. Then, we apply the Kalman filter to the estimated model and the data to compute estimates of model-based capital and technology for the sample. Finally, we describe and evaluate similarities and differences between the model-based and standard estimates of capital and technology reported by the Bureau of Labor Statistics.
Keywords: Kalman; filter; estimation; of; latent; variables (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165-1889(09)00006-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:dyncon:v:33:y:2009:i:7:p:1398-1418
Access Statistics for this article
Journal of Economic Dynamics and Control is currently edited by J. Bullard, C. Chiarella, H. Dawid, C. H. Hommes, P. Klein and C. Otrok
More articles in Journal of Economic Dynamics and Control from Elsevier
Bibliographic data for series maintained by Catherine Liu ().