Self-organized criticality in a dynamic game
Andreas Blume,
John Duffy and
Ted Temzelides
Journal of Economic Dynamics and Control, 2010, vol. 34, issue 8, 1380-1391
Abstract:
We investigate conditions under which self-organized criticality (SOC) arises in a version of a dynamic entry game. In the simplest version of the game, there is a single location--a pool--and one agent is exogenously dropped into the pool every period. Payoffs to entrants are positive as long as the number of agents in the pool is below a critical level. If an agent chooses to exit, he cannot re-enter, resulting in a future payoff of zero. Agents in the pool decide simultaneously each period whether to stay in or not. We characterize the symmetric mixed strategy equilibrium of the resulting dynamic game. We then introduce local interactions between agents that occupy neighboring pools and demonstrate that, under our payoff structure, local interaction effects are necessary and sufficient for SOC and for an associated power law to emerge. Thus, we provide an explicit game-theoretic model of the mechanism through which SOC can arise in a social context with forward looking agents.
Keywords: Self-organization; Criticality; Local; interaction; Power; Law; Entry; Game (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165-1889(10)00082-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:dyncon:v:34:y:2010:i:8:p:1380-1391
Access Statistics for this article
Journal of Economic Dynamics and Control is currently edited by J. Bullard, C. Chiarella, H. Dawid, C. H. Hommes, P. Klein and C. Otrok
More articles in Journal of Economic Dynamics and Control from Elsevier
Bibliographic data for series maintained by Catherine Liu ().