Non-linear DSGE models and the optimized central difference particle filter
Martin Andreasen
Journal of Economic Dynamics and Control, 2011, vol. 35, issue 10, 1671-1695
Abstract:
We improve the accuracy and speed of particle filtering for non-linear DSGE models with potentially non-normal shocks. This is done by introducing a new proposal distribution which (i) incorporates information from new observables and (ii) has a small optimization step that minimizes the distance to the optimal proposal distribution. A particle filter with this proposal distribution is shown to deliver a high level of accuracy even with relatively few particles, and it is therefore much more efficient than the standard particle filter.
Keywords: Likelihood; inference; Non-linear; DSGE; models; Non-normal; shocks; Particle; filtering (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165188911000716
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:dyncon:v:35:y:2011:i:10:p:1671-1695
Access Statistics for this article
Journal of Economic Dynamics and Control is currently edited by J. Bullard, C. Chiarella, H. Dawid, C. H. Hommes, P. Klein and C. Otrok
More articles in Journal of Economic Dynamics and Control from Elsevier
Bibliographic data for series maintained by Catherine Liu ().