Solving generalized multivariate linear rational expectations models
Fei Tan () and
Todd Walker
Journal of Economic Dynamics and Control, 2015, vol. 60, issue C, 95-111
Abstract:
We generalize the linear rational expectations solution method of Whiteman (1983) to the multivariate case. This facilitates the use of a generic exogenous driving process that must only satisfy covariance stationarity. Multivariate cross-equation restrictions linking the Wold representation of the exogenous process to the endogenous variables of the rational expectations model are obtained. We argue that this approach offers important insights into rational expectations models. We give two examples in the paper—an asset pricing model with incomplete information and a monetary model with observationally equivalent monetary-fiscal policy interactions. We relate our solution methodology to other popular approaches to solving multivariate linear rational expectations models, and provide user-friendly code that executes our approach.
Keywords: Solution methods; Analytic functions; Rational expectations (search for similar items in EconPapers)
JEL-codes: C32 C62 C65 E63 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016518891500144X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:dyncon:v:60:y:2015:i:c:p:95-111
DOI: 10.1016/j.jedc.2015.07.007
Access Statistics for this article
Journal of Economic Dynamics and Control is currently edited by J. Bullard, C. Chiarella, H. Dawid, C. H. Hommes, P. Klein and C. Otrok
More articles in Journal of Economic Dynamics and Control from Elsevier
Bibliographic data for series maintained by Catherine Liu ().