Robust measurement of (heavy-tailed) risks: Theory and implementation
Judith C. Schneider and
Nikolaus Schweizer
Journal of Economic Dynamics and Control, 2015, vol. 61, issue C, 183-203
Abstract:
Every model presents an approximation of reality and thus modeling inevitably implies model risk. We quantify model risk in a non-parametric way, i.e., in terms of the divergence from a so-called nominal model. Worst-case risk is defined as the maximal risk among all models within a given divergence ball. We derive several new results on how different divergence measures affect the worst case. Moreover, we present a novel, empirical way built on model confidence sets (MCS) for choosing the radius of the divergence ball around the nominal model, i.e., for calibrating the amount of model risk. We demonstrate the implications of heavy-tailed risks for the choice of the divergence measure and the empirical divergence estimation. For heavy-tailed risks, the simulation of the worst-case distribution is numerically intricate. We present a Sequential Monte Carlo algorithm which is suitable for this task. An extended practical example, assessing the robustness of a hedging strategy, illustrates our approach.
Keywords: Divergence estimation; Model risk; Risk management; Robustness; Sequential Monte Carlo (search for similar items in EconPapers)
JEL-codes: C63 D81 G32 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165188915001773
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:dyncon:v:61:y:2015:i:c:p:183-203
DOI: 10.1016/j.jedc.2015.09.010
Access Statistics for this article
Journal of Economic Dynamics and Control is currently edited by J. Bullard, C. Chiarella, H. Dawid, C. H. Hommes, P. Klein and C. Otrok
More articles in Journal of Economic Dynamics and Control from Elsevier
Bibliographic data for series maintained by Catherine Liu ().