Calibration of stochastic volatility models: A Tikhonov regularization approach
Min Dai,
Ling Tang and
Xingye Yue
Journal of Economic Dynamics and Control, 2016, vol. 64, issue C, 66-81
Abstract:
We aim to calibrate stochastic volatility models from option prices. We develop a Tikhonov regularization approach with an efficient numerical algorithm to recover the risk neutral drift term of the volatility (or variance) process. In contrast to most existing literature, we do not assume that the drift term has any special structure. As such, our algorithm applies to calibration of general stochastic volatility models. An extensive numerical analysis is presented to demonstrate the efficiency of our approach. Interestingly, our empirical study reveals that the risk neutral variance processes recovered from market prices of options on S&P 500 index and EUR/USD exchange rate are indeed linearly mean-reverting.
Keywords: Calibration; Stochastic volatility model; Tikhonov regularization; Inverse problem (search for similar items in EconPapers)
JEL-codes: G12 G13 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165188916000038
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:dyncon:v:64:y:2016:i:c:p:66-81
DOI: 10.1016/j.jedc.2016.01.002
Access Statistics for this article
Journal of Economic Dynamics and Control is currently edited by J. Bullard, C. Chiarella, H. Dawid, C. H. Hommes, P. Klein and C. Otrok
More articles in Journal of Economic Dynamics and Control from Elsevier
Bibliographic data for series maintained by Catherine Liu ().