Index tracking model, downside risk and non-parametric kernel estimation
Jinbo Huang,
Yong Li and
Haixiang Yao
Journal of Economic Dynamics and Control, 2018, vol. 92, issue C, 103-128
Abstract:
In this paper, we propose an index tracking model with the conditional value-at-risk (CVaR) constraint based on a non-parametric kernel (NPK) estimation framework. In theory, we demonstrate that the index tracking model with the CVaR constraint is a convex optimization problem. We then derive NPK estimators for tracking errors and CVaR, and thereby construct the NPK index tracking model. Monte Carlo simulations show that the NPK method outperforms the linear programming (LP) method in terms of estimation accuracy. In addition, the NPK method can enhance computational efficiency when the sample size is large. Empirical tests show that the NPK method can effectively control downside risk and obtain higher excess returns, in both bearish and bullish market environments.
Keywords: Non-parametric kernel estimation; Index tracking model; Conditional value-at-risk (search for similar items in EconPapers)
JEL-codes: G10 G11 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165188918301283
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:dyncon:v:92:y:2018:i:c:p:103-128
DOI: 10.1016/j.jedc.2018.04.008
Access Statistics for this article
Journal of Economic Dynamics and Control is currently edited by J. Bullard, C. Chiarella, H. Dawid, C. H. Hommes, P. Klein and C. Otrok
More articles in Journal of Economic Dynamics and Control from Elsevier
Bibliographic data for series maintained by Catherine Liu ().