Non-linear volatility dynamics and risk management of precious metals
Sercan Demiralay and
Veysel Ulusoy
The North American Journal of Economics and Finance, 2014, vol. 30, issue C, 183-202
Abstract:
In this paper, we investigate the value-at-risk predictions of four major precious metals (gold, silver, platinum, and palladium) with non-linear long memory volatility models, namely FIGARCH, FIAPARCH and HYGARCH, under normal and Student-t innovations’ distributions. For these analyses, we consider both long and short trading positions. Overall, our results reveal that long memory volatility models under Student-t distribution perform well in forecasting a one-day-ahead VaR for both long and short positions. In addition, we find that FIAPARCH model with Student-t distribution, which jointly captures long memory and asymmetry, as well as fat-tails, outperforms other models in VaR forecasting. Our results have potential implications for portfolio managers, producers, and policy makers.
Keywords: Long memory; Value-at-risk; Volatility modeling; Precious metals prices (search for similar items in EconPapers)
JEL-codes: C53 C58 G17 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1062940814001077
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecofin:v:30:y:2014:i:c:p:183-202
DOI: 10.1016/j.najef.2014.10.002
Access Statistics for this article
The North American Journal of Economics and Finance is currently edited by Hamid Beladi
More articles in The North American Journal of Economics and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().