Variance-Gamma and Normal-Inverse Gaussian models: Goodness-of-fit to Chinese high-frequency index returns
Ahmet Goncu and
Hao Yang
The North American Journal of Economics and Finance, 2016, vol. 36, issue C, 279-292
Abstract:
In this study Variance-Gamma (VG) and Normal-Inverse Gaussian (NIG) distributions are compared with the benchmark of generalized hyperbolic distribution in terms of their fit to the empirical distribution of high-frequency stock market index returns in China. First, we estimate the considered models in a Markov regime switching framework for the identification of different volatility regimes. Second, the goodness-of-fit results are compared at different time scales of log-returns. Third, the goodness-of-fit results are validated through bootstrapping experiments. Our results show that as the time scale of log-returns decrease NIG model outperforms the VG model consistently and the difference between the goodness-of-fit statistics increase. For high-frequency Chinese index returns, NIG model is more robust and provides a better fit to the empirical distributions of returns at different time scales.
Keywords: Variance-Gamma; Normal-Inverse Gaussian; Generalized hyperbolic distribution; Chinese high-frequency index returns (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1062940816300079
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecofin:v:36:y:2016:i:c:p:279-292
DOI: 10.1016/j.najef.2016.02.004
Access Statistics for this article
The North American Journal of Economics and Finance is currently edited by Hamid Beladi
More articles in The North American Journal of Economics and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().