Predicting stock market crises using daily stock market valuation and investor sentiment indicators
Junhui Fu,
Qingling Zhou,
Yufang Liu and
Xiang Wu
The North American Journal of Economics and Finance, 2020, vol. 51, issue C
Abstract:
The purpose of this paper is to develop a daily early warning system for stock market crises using daily stock market valuation and investor sentiment indicators. To achieve this goal, we use principal components analysis to propose a comprehensive index of daily market indicators that reflects stock market valuation and investor sentiment. Based on the comprehensive index, we employ a logit model with Ensemble Empirical Mode Decomposition to develop a daily early warning system for stock market crises. Finally, we apply the proposed system to the early warning for stock market crises in China. The in-sample forecasting results show that investor sentiment and the forecast horizon by Ensemble Empirical Mode Decomposition improve the forecasting performance of conventional early warning systems. The out-of-sample forecasting results indicate that the proposed warning system still has a good performance.
Keywords: Daily early warning system; Stock market crises; Investor sentiment; Ensemble Empirical Mode Decomposition; Logit model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1062940818304108
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecofin:v:51:y:2020:i:c:s1062940818304108
DOI: 10.1016/j.najef.2019.01.002
Access Statistics for this article
The North American Journal of Economics and Finance is currently edited by Hamid Beladi
More articles in The North American Journal of Economics and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().