Forecasting volatility with component conditional autoregressive range model
Xinyu Wu and
Xinmeng Hou
The North American Journal of Economics and Finance, 2020, vol. 51, issue C
Abstract:
In this paper, we propose a component conditional autoregressive range (CCARR) model for forecasting volatility. The proposed CCARR model assumes that the price range comprises both a long-run (trend) component and a short-run (transitory) component, which has the capacity to capture the long memory property of volatility. The model is intuitive and convenient to implement by using the maximum likelihood estimation method. Empirical analysis using six stock market indices highlights the value of incorporating a second component into range (volatility) modelling and forecasting. In particular, we find that the proposed CCARR model fits the data better than the CARR model, and that it generates more accurate out-of-sample volatility forecasts and contains more information content about the true volatility than the popular GARCH, component GARCH and CARR models.
Keywords: Price range; CARR; CCARR; GARCH; CGARCH; Volatility forecasting (search for similar items in EconPapers)
JEL-codes: C32 C5 G17 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S106294081930083X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecofin:v:51:y:2020:i:c:s106294081930083x
DOI: 10.1016/j.najef.2019.101078
Access Statistics for this article
The North American Journal of Economics and Finance is currently edited by Hamid Beladi
More articles in The North American Journal of Economics and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().