A new method to verify Bitcoin bubbles: Based on the production cost
Jinwu Xiong,
Qing Liu and
Lei Zhao
The North American Journal of Economics and Finance, 2020, vol. 51, issue C
Abstract:
As the first kind of digital cryptocurrency, the Bitcoin price cycle provides an opportunity to test bubble theory in the digital currency era. Based on the existing asset bubble theory, we verified the Bitcoin bubble based on the production cost with the application of VAR and LPPL models, and this method achieved good predictive power. The following conclusions are reached: (1) PECR is constructed to depict the deviation degree between the price and production cost, while BC is used to illustrate the bubble size in the price, and both are effective measures; (2) the number of unique addresses is a suitable measure of the use value of Bitcoin, and this result has passed the Granger causality test; (3) PECR and BC are verified via the LPPL model, and the next large bubble is expected in the second half of 2020. Considering that Bitcoin will see 'output halved' in May 2020, this prediction is a high-probability event.
Keywords: Bitcoin bubble; Production cost; PECR; BC; VAR; LPPL (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1062940819303602
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecofin:v:51:y:2020:i:c:s1062940819303602
DOI: 10.1016/j.najef.2019.101095
Access Statistics for this article
The North American Journal of Economics and Finance is currently edited by Hamid Beladi
More articles in The North American Journal of Economics and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().