News will tell: Forecasting foreign exchange rates based on news story events in the economy calendar
Hamed Naderi Semiromi,
Stefan Lessmann and
Wiebke Peters
The North American Journal of Economics and Finance, 2020, vol. 52, issue C
Abstract:
The paper proposes a novel approach to predict intraday directional-movements of currency-pairs in the foreign exchange market based on news story events in the economy calendar. Prior work on using textual data for forecasting foreign exchange market developments does not consider economy calendar events. We consider a rich set of text analytics methods to extract information from news story events and propose a novel sentiment dictionary for the foreign exchange market. The paper shows how news events and corresponding news stories provide valuable information to increase forecast accuracy and inform trading decisions. More specifically, using textual data together with technical indicators as inputs to different machine learning models reveals that the accuracy of market predictions shortly after the release of news is substantially higher than in other periods, which suggests the feasibility of news-based trading. Furthermore, empirical results identify a combination of a gradient boosting algorithm, our new sentiment dictionary, and text-features based-on term frequency weighting to offer the most accurate forecasts. These findings are valuable for traders, risk managers and other consumers of foreign exchange market forecasts and offer guidance how to design accurate prediction systems.
Keywords: Time series forecasting; Financial news; Machine learning; Text mining; Sentiment extraction (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1062940820300784
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecofin:v:52:y:2020:i:c:s1062940820300784
DOI: 10.1016/j.najef.2020.101181
Access Statistics for this article
The North American Journal of Economics and Finance is currently edited by Hamid Beladi
More articles in The North American Journal of Economics and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().