Economics at your fingertips  

Predicting equity premium using dynamic model averaging. Does the state–space representation matter?

Nima Nonejad

The North American Journal of Economics and Finance, 2021, vol. 57, issue C

Abstract: Dynamic model averaging (DMA) has become a very useful tool with regards to dealing with two important aspects of time-series analysis, namely, parameter instability and model uncertainty. An important component of DMA is the Kalman filter. It is used to filter out the latent time-varying regression coefficients of the predictive regression of interest, and produce the model predictive likelihood, which is needed to construct the probability of each model in the model set. To apply the Kalman filter, one must write the model of interest in linear state–space form. In this study, we demonstrate that the state–space representation has implications on out-of-sample prediction performance, and the degree of shrinkage. Using Monte Carlo simulations as well as financial data at different sampling frequencies, we document that the way in which the current literature tends to formulate the candidate time-varying parameter predictive regression in linear state–space form ignores empirical features that are often present in the data at hand, namely, predictor persistence and predictor endogeneity. We suggest a straightforward way to account for these features in the DMA setting. Results using the widely applied Goyal and Welch (2008) dataset document that modifying the DMA framework as we suggest has a bearing on equity premium point prediction performance from a statistical as well as an economic viewpoint.

Keywords: Kalman filter; Endogeneity; Model uncertainty; Parameter instability; Predictor persistence; State–space representation (search for similar items in EconPapers)
JEL-codes: C11 C22 C51 G17 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1016/j.najef.2021.101442

Access Statistics for this article

The North American Journal of Economics and Finance is currently edited by Hamid Beladi

More articles in The North American Journal of Economics and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

Page updated 2022-11-19
Handle: RePEc:eee:ecofin:v:57:y:2021:i:c:s106294082100070x