EconPapers    
Economics at your fingertips  
 

A new estimator of a jump discontinuity in regression

Carlos Martins-Filho, Sihong Xie and Feng Yao

Economics Letters, 2022, vol. 218, issue C

Abstract: We propose a new class of estimators for a jump discontinuity on nonparametric regression. While there is a vast literature in econometrics that addresses this issue (e.g., Hahn et al., 2001; Porter, 2003; Imbens and Lemieux, 2008; Cattaneo and Escanciano, 2017), the main approach in these studies is to use local polynomial (linear) estimators on both sides of the discontinuity to produce an estimator for the jump that has desirable boundary properties. Our approach extends the regression from both sides of the discontinuity using a theorem of Hestenes (1941). The extended regressions are then estimated and used to construct an estimator for the jump discontinuity that solves the boundary problems normally associated with classical Nadaraya–Watson estimators. We provide asymptotic characterizations for the jump estimators, including bias and variance orders, and asymptotic distributions after suitable centering and normalization. Monte Carlo simulations show that our jump estimators can outperform those based on local polynomial (linear) regression.

Keywords: Regression discontinuity designs; Estimation of jump discontinuities; Hestenes’ extension; Boundary bias (search for similar items in EconPapers)
JEL-codes: C13 C14 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165176522002440
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecolet:v:218:y:2022:i:c:s0165176522002440

DOI: 10.1016/j.econlet.2022.110711

Access Statistics for this article

Economics Letters is currently edited by Economics Letters Editorial Office

More articles in Economics Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:ecolet:v:218:y:2022:i:c:s0165176522002440