EconPapers    
Economics at your fingertips  
 

Intricacy of cryptocurrency returns

Maximilian Nagl

Economics Letters, 2024, vol. 239, issue C

Abstract: This paper quantifies the intricacy, i.e., non-linearity and interactions of predictor variables, in explaining cryptocurrency returns. Using data from several thousand cryptocurrencies spanning 2014 to 2022, we observe a notably high level of intricacy. This provides a quantitative measure why linear models are often outperformed by machine learning algorithms in predicting cryptocurrency returns. Furthermore, we document that the intricacy in these predictions is considerably larger compared to stocks. Our analysis reveals that interactions are gaining importance over time, while individual non-linearity of the drivers is diminishing. This adds to the emerging literature on spillover effects between cryptocurrencies, traditional finance and the economy. This finding is important for investors as well as regulators as the high intricacy proposes challenges to both actors in the market.

Keywords: Cryptocurrency returns; Machine learning; Explainable artificial intelligence; Intricacy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165176524002295
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecolet:v:239:y:2024:i:c:s0165176524002295

DOI: 10.1016/j.econlet.2024.111746

Access Statistics for this article

Economics Letters is currently edited by Economics Letters Editorial Office

More articles in Economics Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecolet:v:239:y:2024:i:c:s0165176524002295