Birdwatching preferences reveal synergies and tradeoffs among recreation, carbon, and fisheries ecosystem services in Pacific Northwest estuaries, USA
Kristin B. Byrd,
Isa Woo,
Laurie Hall,
Emily Pindilli,
Monica Moritsch,
Anthony Good,
Susan De La Cruz,
Melanie Davis and
Glynnis Nakai
Ecosystem Services, 2024, vol. 69, issue C
Abstract:
Coastal ecosystems provide multiple ecosystem services that are valued in diverse ways. The Nisqually River Delta (the Delta), an estuary in Puget Sound, Washington, U.S.A., is co-managed by the Nisqually Indian Tribe and the Billy Frank Jr. Nisqually National Wildlife Refuge. In an ecosystem services assessment, we used different service-appropriate methods including citizen science, statistical and geospatial models, and scenario analysis to evaluate three ecosystem services – recreational birdwatching, soil carbon accumulation and fishery production – indicated as priorities for the Refuge, Nisqually Indian Tribe, and surrounding communities. We developed a generalized additive mixed model set based on eBird mobile application birdwatching observations to understand the biological and landscape features that influence birdwatching and to project birdwatching visitation based on scenarios of Delta habitat change. We evaluated ecosystem service synergies and tradeoffs associated with habitat change for three coastal habitat types using scenario outputs from the birdwatching model and published results on Delta soil carbon accumulation and fishery production. The highest-ranked birdwatching models explained 88 % of the deviance and showed that visitation was greatest in winter months when distance to major cities was approximately 20 km. Recreational birdwatching increased with increasing area of forested wetland, emergent wetland, aquatic vegetation bed, open access, and total estuary. With increasing forested and emergent wetland area, recreational birdwatching, out-migrating juvenile Chinook salmon weight and soil carbon accumulation all increased. With increasing aquatic vegetation bed (resulting from sea level rise), recreational birdwatching increased, but salmon weight and soil carbon accumulation decreased. We identified practical ways in which ecosystem services may be incorporated into adaptive management frameworks that support climate adaptation decision making. This study illustrated how use of ecosystem services can help managers make decisions that have greater benefit for wildlife and people, communicate the societal value of decisions and increase local support and participation.
Keywords: Soil carbon accumulation; Salmon production; Valuation; Climate adaptation; Land management; Citizen science (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2212041624000639
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecoser:v:69:y:2024:i:c:s2212041624000639
DOI: 10.1016/j.ecoser.2024.101656
Access Statistics for this article
Ecosystem Services is currently edited by Leon C Braat
More articles in Ecosystem Services from Elsevier
Bibliographic data for series maintained by Catherine Liu ().