Closed-form results for vector moving average models with a univariate estimation approach
Federico Poloni () and
Giacomo Sbrana
Econometrics and Statistics, 2019, vol. 10, issue C, 27-52
Abstract:
The estimation of a vector moving average (VMA) process represents a challenging task since the likelihood estimator is extremely slow to converge, even for small-dimensional systems. An alternative estimation method is provided, based on computing several aggregations of the variables of the system and applying likelihood estimators to the resulting univariate processes; the VMA parameters are then recovered using linear algebra tools. This avoids the complexity of maximizing the multivariate likelihood directly. Closed-form results are presented and used to compute the parameters of the process as a function of its autocovariances, using linear algebra tools. Then, an autocovariance estimation method based on the estimation of univariate models only is introduced. It is proved that the resulting estimator is consistent and asymptotically normal. A Monte Carlo simulation shows the good performance of this estimator in small samples.
Keywords: VARMA estimation; Maximum likelihood; Canonical factorization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306218300327
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:10:y:2019:i:c:p:27-52
DOI: 10.1016/j.ecosta.2018.06.003
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().