Accurate and robust inference
Elvezio Ronchetti
Econometrics and Statistics, 2020, vol. 14, issue C, 74-88
Abstract:
Classical statistical inference relies mostly on parametric models and on optimal procedures which are mostly justified by their asymptotic properties when the data generating process corresponds to the assumed model. However, models are only ideal approximations to reality and deviations from the assumed model distribution are present on real data and can invalidate standard errors, confidence intervals, and p-values based on standard classical techniques. Moreover, the distributions needed to construct these quantities cannot typically be computed exactly and first-order asymptotic theory is used to approximate them. This can lead to a lack of accuracy, especially in the tails of the distribution, which are the regions of interest for inference. The interplay between these two issues is investigated and it is shown how to construct statistical procedures which are simultaneously robust and accurate.
Keywords: Higher-order asymptotics; Relative error; Robustness; Saddlepoint methods; Stable inference (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306220300022
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:14:y:2020:i:c:p:74-88
DOI: 10.1016/j.ecosta.2019.12.003
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().