EconPapers    
Economics at your fingertips  
 

Combined estimation of semiparametric panel data models

Bai Huang, Tae Hwy Lee and Aman Ullah

Econometrics and Statistics, 2020, vol. 15, issue C, 30-45

Abstract: The combined estimation for the semiparametric panel data models is proposed. The properties of estimators for the semiparametric panel data models with random effects (RE) and fixed effects (FE) are examined. When the RE estimator suffers from endogeneity due to the individual effects correlated with the regressors, the semiparametric RE and FE estimators may be adaptively combined, with the combining weights depending on the degree of endogeneity. The asymptotic distributions of these three estimators (RE, FE, and combined estimators) for the semiparametric panel data models are derived using a local asymptotic framework. These three estimators are then compared in asymptotic risk. The semiparametric combined estimator has strictly smaller asymptotic risk than the semiparametric fixed effect estimator. The Monte Carlo study shows that the semiparametric combined estimator outperforms semiparametric FE and RE estimators except when the degrees of endogeneity and heterogeneity of the individual effects are very small. Also presented is an empirical application where the effect of public sector capital in the private economy production function is examined using the US state level panel data.

Keywords: Endogeneity; Panel data; Semiparametric FE estimator; Semiparametric RE estimator; Semiparametric combined estimator; Local asymptotics; Hausman test (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306219300255
Full text for ScienceDirect subscribers only. Contains open access articles

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:15:y:2020:i:c:p:30-45

DOI: 10.1016/j.ecosta.2019.05.001

Access Statistics for this article

Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi

More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecosta:v:15:y:2020:i:c:p:30-45