EconPapers    
Economics at your fingertips  
 

Efficient surface finish defect detection using reduced rank spline smoothers and probabilistic classifiers

Natalya Pya Arnqvist, Blaise Ngendangenzwa, Eric Lindahl, Leif Nilsson and Jun Yu

Econometrics and Statistics, 2021, vol. 18, issue C, 89-105

Abstract: One of the primary concerns of product quality control in the automotive industry is an automated detection of defects of small sizes on specular car body surfaces. A new statistical learning approach is presented for surface finish defect detection based on spline smoothing method for feature extraction and k-nearest neighbour probabilistic classifier. Since the surfaces are specular, structured lightning reflection technique is applied for image acquisition. Reduced rank cubic regression splines are used to smooth the pixel values while the effective degrees of freedom of the obtained smooths serve as components of the feature vector. A key advantage of the approach is that it allows reaching near zero misclassification error rate when applying standard learning classifiers. In addition, probability based performance evaluation metrics have been proposed as alternatives to the conventional metrics. The usage of those provides the means for uncertainty estimation of the predictive performance of a classifier. Experimental classification results on the images obtained from the pilot system located at Volvo GTO Cab plant in Umeå, Sweden, show that the proposed approach is much more efficient than the compared methods.

Keywords: Classification; Defect detection; Smoothing; EDF; Probabilistic k-NN classifier (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306220300514
Full text for ScienceDirect subscribers only. Contains open access articles

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:18:y:2021:i:c:p:89-105

DOI: 10.1016/j.ecosta.2020.05.005

Access Statistics for this article

Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi

More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecosta:v:18:y:2021:i:c:p:89-105