High-dimensional adaptive function-on-scalar regression
Zhaohu Fan and
Matthew Reimherr
Econometrics and Statistics, 2017, vol. 1, issue C, 167-183
Abstract:
Applications of functional data with large numbers of predictors have grown precipitously in recent years, driven, in part, by rapid advances in genotyping technologies. Given the large numbers of genetic mutations encountered in genetic association studies, statistical methods which more fully exploit the underlying structure of the data are imperative for maximizing statistical power. However, there is currently very limited work in functional data with large numbers of predictors. Tools are presented for simultaneous variable selection and parameter estimation in a functional linear model with a functional outcome and a large number of scalar predictors; the technique is called AFSL for Adaptive Function-on-Scalar Lasso. It is demonstrated how techniques from convex analysis over Hilbert spaces can be used to establish a functional version of the oracle property for AFSL over any real separable Hilbert space, even when the number of predictors, I, is exponentially large compared to the sample size, N. AFSL is illustrated via a simulation study and data from the Childhood Asthma Management Program, CAMP, selecting those genetic mutations which are important for lung growth.
Keywords: Variable selection; Functional regression; Oracle property (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306216300053
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:1:y:2017:i:c:p:167-183
DOI: 10.1016/j.ecosta.2016.08.001
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().