Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration
Han Lin Shang
Econometrics and Statistics, 2017, vol. 1, issue C, 184-200
Abstract:
Environmental data often take the form of a collection of curves observed sequentially over time. An example of this includes daily pollution measurement curves describing the concentration of a particulate matter in ambient air. These curves can be viewed as a time series of functions observed at equally spaced intervals over a dense grid. The nature of high-dimensional data poses challenges from a statistical aspect, due to the so-called “curse of dimensionality”, but it also poses opportunities to analyze a rich source of information to better understand dynamic changes at short time intervals. Statistical methods are introduced and compared for forecasting one-day-ahead intraday concentrations of particulate matter; as new data are sequentially observed, dynamic updating methods are proposed to update point and interval forecasts to achieve better accuracy. These forecasting methods are validated through an empirical study of half-hourly concentrations of airborne particulate matter in Graz, Austria.
Keywords: Block moving; Dynamic updating; Functional principal component regression; Functional linear regression; Maximum entropy bootstrap; VAR (search for similar items in EconPapers)
JEL-codes: C14 C55 Q53 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306216300235
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:1:y:2017:i:c:p:184-200
DOI: 10.1016/j.ecosta.2016.08.004
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().