EconPapers    
Economics at your fingertips  
 

Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration

Han Lin Shang ()

Econometrics and Statistics, 2017, vol. 1, issue C, 184-200

Abstract: Environmental data often take the form of a collection of curves observed sequentially over time. An example of this includes daily pollution measurement curves describing the concentration of a particulate matter in ambient air. These curves can be viewed as a time series of functions observed at equally spaced intervals over a dense grid. The nature of high-dimensional data poses challenges from a statistical aspect, due to the so-called “curse of dimensionality”, but it also poses opportunities to analyze a rich source of information to better understand dynamic changes at short time intervals. Statistical methods are introduced and compared for forecasting one-day-ahead intraday concentrations of particulate matter; as new data are sequentially observed, dynamic updating methods are proposed to update point and interval forecasts to achieve better accuracy. These forecasting methods are validated through an empirical study of half-hourly concentrations of airborne particulate matter in Graz, Austria.

Keywords: Block moving; Dynamic updating; Functional principal component regression; Functional linear regression; Maximum entropy bootstrap; VAR (search for similar items in EconPapers)
JEL-codes: C14 C55 Q53 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306216300235
Full text for ScienceDirect subscribers only. Contains open access articles

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:1:y:2017:i:c:p:184-200

Access Statistics for this article

Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi

More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2019-10-05
Handle: RePEc:eee:ecosta:v:1:y:2017:i:c:p:184-200