Kernel-based Volatility Generalised Least Squares
Ilias Chronopoulos,
George Kapetanios and
Katerina Petrova
Econometrics and Statistics, 2021, vol. 20, issue C, 2-11
Abstract:
The problem of inference in a standard linear regression model with heteroskedastic errors is investigated. A GLS estimator which is based on a nonparametric kernel estimator is proposed for the volatility process. It is shown that the resulting feasible GLS estimator is T-consistent for a wide range of deterministic and stochastic processes for the time-varying volatility. Moreover, the kernel-GLS estimator is asymptotically more efficient than OLS and hence inference based on its asymptotic distribution is sharper. A Monte Carlo exercise is designed to study the finite sample properties of the proposed estimator and it is shown that tests based on it are correctly-sized for a variety of DGPs. As expected, it is found that in some cases, testing based on OLS is invalid. Crucially, even in cases when tests based on OLS or OLS with heteroskedasticity-consistent (HC) standard errors are correctly-sized, it is found that inference based on the proposed GLS estimator is more powerful even for relatively small sample sizes.
Keywords: Heteroskedasticity; Stochastic volatility; Weighted least squares (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306219300644
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:20:y:2021:i:c:p:2-11
DOI: 10.1016/j.ecosta.2019.11.001
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().