Model calibration and validation via confidence sets
Raffaello Seri,
Mario Martinoli,
Davide Secchi and
Samuele Centorrino
Econometrics and Statistics, 2021, vol. 20, issue C, 62-86
Abstract:
The issues of calibrating and validating a theoretical model are considered, when it is required to select the parameters that better approximate the data among a finite number of alternatives. Based on a user-defined loss function, Model Confidence Sets are proposed as a tool to restrict the number of plausible alternatives, and measure the uncertainty associated to the preferred model. Furthermore, an asymptotically exact logarithmic approximation of the probability of choosing a model via a multivariate rate function is suggested. A simple numerical procedure is outlined for the computation of the latter and it is shown that the procedure yields results consistent with Model Confidence Sets. The illustration and implementation of the proposed approach is showcased in a model of inquisitiveness in ad hoc teams, relevant for bounded rationality and organizational research.11Code and data are available as an online supplement.
Keywords: Calibration; Validation; Simulated models; Model confidence set; Large deviations (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306220300162
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:20:y:2021:i:c:p:62-86
DOI: 10.1016/j.ecosta.2020.01.001
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().