Vine copula mixture models and clustering for non-Gaussian data
Özge Sahin and
Claudia Czado
Econometrics and Statistics, 2022, vol. 22, issue C, 136-158
Abstract:
The majority of finite mixture models suffer from not allowing asymmetric tail dependencies within components and not capturing non-elliptical clusters in clustering applications. Since vine copulas are very flexible in capturing these dependencies, a novel vine copula mixture model for continuous data is proposed. The model selection and parameter estimation problems are discussed, and further, a new model-based clustering algorithm is formulated. The use of vine copulas in clustering allows for a range of shapes and dependency structures for the clusters. The simulation experiments illustrate a significant gain in clustering accuracy when notably asymmetric tail dependencies or/and non-Gaussian margins within the components exist. The analysis of real data sets accompanies the proposed method. The model-based clustering algorithm with vine copula mixture models outperforms others, especially for the non-Gaussian multivariate data.
Keywords: Dependence; ECM algorithm; model-based clustering; multivariate finite mixtures; pair-copula; statistical learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306221001052
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:22:y:2022:i:c:p:136-158
DOI: 10.1016/j.ecosta.2021.08.011
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().