Energy consumption and GDP: a panel data analysis with multi-level cross-sectional dependence
Carlos Vladimir Rodríguez-Caballero
Authors registered in the RePEc Author Service: Carlos Vladimir Rodriguez Caballero
Econometrics and Statistics, 2022, vol. 23, issue C, 128-146
Abstract:
A fractionally integrated panel data model with a multi-level cross-sectional dependence is proposed. Such dependence is driven by a factor structure that captures comovements between blocks of variables through top-level factors, and within these blocks by non-pervasive factors. The model can include stationary and non-stationary variables, which makes it flexible enough to analyze relevant dynamics that are frequently found in macroeconomic and financial panels. The estimation methodology is based on fractionally differenced block-by-block cross-sectional averages. Monte Carlo simulations suggest that the procedure performs well in typical samples sizes. This methodology is applied to study the long-run relationship between energy consumption and economic growth. The main results suggest that estimates in some empirical studies may have some positive biases caused by neglecting the presence non-pervasive cross-sectional dependence and long-range dependence processes.
Keywords: Cross-sectional dependence; Multi-level factor; Long memory; Energy-growth nexus (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306221000083
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:23:y:2022:i:c:p:128-146
DOI: 10.1016/j.ecosta.2020.11.002
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().