A bias-adjusted estimator in quantile regression for clustered data
Maria Laura Battagliola,
Helle Sørensen,
Anders Tolver and
Ana-Maria Staicu
Econometrics and Statistics, 2022, vol. 23, issue C, 165-186
Abstract:
Quantile regression models with random effects are useful for studying associations between covariates and quantiles of the response distribution for clustered data. Parameter estimation is examined for a class of mixed-effects quantile regression models, with focus on settings with many but small clusters. The main contributions are the following: (i) documenting that existing methods may lead to severely biased estimators for fixed effects parameters; (ii) proposing a new two-step estimation methodology where predictions of the random effects are first computed by a pseudo likelihood approach (the LQMM method) and then used as offsets in standard quantile regression; (iii) proposing a novel bootstrap sampling procedure in order to reduce bias of the two-step estimator and compute confidence intervals. The proposed estimation and associated inference is assessed numerically through rigorous simulation studies and applied to an AIDS Clinical Trial Group (ACTG) study.
Keywords: Linear quantile regression; Clustered data; Random effects; Bias-adjustment; Wild bootstrap; AIDS clinical trial group study (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306221000794
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:23:y:2022:i:c:p:165-186
DOI: 10.1016/j.ecosta.2021.07.003
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().