Bias-corrected method of moments estimators for dynamic panel data models
Jörg Breitung,
Sebastian Kripfganz and
Kazuhiko Hayakawa
Econometrics and Statistics, 2022, vol. 24, issue C, 116-132
Abstract:
A computationally simple bias correction for linear dynamic panel data models is proposed and its asymptotic properties are studied when the number of time periods is fixed or tends to infinity with the number of panel units. The approach can accommodate both fixed-effects and random-effects assumptions, heteroskedastic errors, as well as higher-order autoregressive models. Panel-corrected standard errors are proposed that allow for robust inference in dynamic models with cross-sectionally correlated errors. Monte Carlo experiments suggest that under the assumption of strictly exogenous regressors the bias-corrected method of moment estimator outperforms popular GMM estimators in terms of efficiency and correctly sized tests.
Keywords: Bias correction; Moment conditions; Autoregressive model; Panel data; Fixed effects; Random Effects (search for similar items in EconPapers)
JEL-codes: C13 C23 C63 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306221000770
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:24:y:2022:i:c:p:116-132
DOI: 10.1016/j.ecosta.2021.07.001
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().